
Operating System
Deadlocks

UNIT-IV

 Prepared By
 Alok Haldar
 Assistant professor
 Department of Computer Science & BCA
 Kharagpur College

 Deadlocks

System model, deadlock characterization, methods for
handling deadlocks, deadlock prevention, deadlock
avoidance, deadlock detection, recovery from deadlock.

System Model
Deadlock Characterization
Methods for Handling Deadlocks
Deadlock Prevention
Deadlock Avoidance
Deadlock Detection
Recovery from Deadlock
Combined Approach to Deadlock Handling

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

A process requests resources; if the resources are not available at that time, the process
enters a waiting state. Sometimes, a waiting process is never again able to change state,
because the resources it has requested are held by other waiting processes. This
situation is called a deadlock.

A process must request a resource before using it and must release the resource after
using it. A process may request as many resources as it requires to carry out its
designated task. Obviously, the number of resources requested may not exceed the total
number of resources available in the system.
For example : A process cannot request three printers if the system has only two.
A process may utilize a resource in only the following sequence:

1. Request : The process requests the resource. If the request cannot be granted
immediately (for example, if the resource is being used by another process), then the
requesting process must wait until it can acquire the resource.
2. Use : The process can operate on the resource (for example, if the resource is a
printer, the process can print on the printer).
3. Release : The process releases the resource.

 Deadlocks

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

The Deadlock Problem

A set of blocked processes each holding a resource and waiting
to acquire a resource held by another process in the set.
Example
System has 2 tape drives.
P1 and P2 each hold one tape drive and each needs another one.

Example
semaphores A and B, initialized to 1

 P0 P1

wait (A); wait(B)
wait (B); wait(A)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Bridge Crossing Example

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Traffic only in one direction.
 Each section of a bridge can be viewed as a resource.
 If a deadlock occurs, it can be resolved if one car

backs up (preempt resources and rollback).
 Several cars may have to be backed up if a deadlock

occurs.
 Starvation is possible.

System Model

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
 Each resource type Ri has Wi instances.
 Each process utilizes a resource as

follows:
 request
 use
 release

Deadlock Characterization

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Deadlock can arise if four conditions hold simultaneously.

 Mutual exclusion: only one process at a time can use a
resource.

 Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other
processes.

 No preemption: a resource can be released only
voluntarily by the process holding it, after that process has
completed its task.

 Circular wait: there exists a set {P0, P1, …, P0} of waiting
processes such that P0 is waiting for a resource that is held
by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by
Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

A set of vertices V and a set of edges E.

 V is partitioned into two types:
 P = {P1, P2, …, Pn}, the set consisting of all the

processes in the system.

 R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system.

 request edge – directed edge P1  Rj

 assignment edge – directed edge Rj  Pi

Resource-Allocation Graph (Cont.)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi Rj

Pi
Rj

Example of a Resource Allocation Graph

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Resource Allocation Graph With A Deadlock

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Resource Allocation Graph With A Cycle But No Deadlock

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Basic Facts

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 If graph contains no cycles  no deadlock.

 If graph contains a cycle 
 if only one instance per resource type, then

deadlock.
 if several instances per resource type,

possibility of deadlock.

Methods for Handling Deadlocks

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Ensure that the system will never enter a
deadlock state.

 Allow the system to enter a deadlock state and
then recover.

 Ignore the problem and pretend that deadlocks
never occur in the system; used by most
operating systems, including UNIX.

Deadlock Prevention

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

How to prevent the deadlock

 Mutual Exclusion – not required for sharable resources;
must hold for nonsharable resources.

 Hold and Wait – must guarantee that whenever a process
requests a resource, it does not hold any other resources.
 Require process to request and be allocated all its resources

before it begins execution, or allow process to request
resources only when the process has none.

 Low resource utilization; starvation possible.

Deadlock Prevention (Cont.)

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 No Preemption –
 If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all
resources currently being held are released.

 Preempted resources are added to the list of resources for
which the process is waiting.

 Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting.

 Circular Wait – impose a total ordering of all resource
types, and require that each process requests
resources in an increasing order of enumeration.

Deadlock Avoidance

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Requires that the system has some additional a priori information
available.

 Simplest and most useful model requires that each
process declare the maximum number of resources of
each type that it may need.

 The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure that
there can never be a circular-wait condition.

 Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes.

Safe State

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state.

 System is in safe state if there exists a safe sequence of all
processes.

 Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources
that Pi can still request can be satisfied by currently available
resources + resources held by all the Pj, with j<I.
 If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished.
 When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate.
 When Pi terminates, Pi+1 can obtain its needed resources, and so

on.

Basic Facts

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 If a system is in safe state  no deadlocks.

 If a system is in unsafe state  possibility of
deadlock.

 Avoidance  ensure that a system will never
enter an unsafe state.

Safe, Unsafe , Deadlock State

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Resource-Allocation Graph Algorithm

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

 Claim edge Pi  Rj indicated that process Pj may
request resource Rj; represented by a dashed line.

 Claim edge converts to request edge when a
process requests a resource.

 When a resource is released by a process,
assignment edge reconverts to a claim edge.

 Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock Avoidance

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

Unsafe State In Resource-Allocation Graph

Prepared By, Prof. Alok Haldar, Dept. of Comp. Sc., Kharagpur College

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

